THE WORKING OF THE MAXI-SUPER IS BASED ON CLAMPING FORCES AND FRICTION
The joint area between the two elevator belt ends is the first area where wear will take place. The exact location where this occurs is where the fastener is caught by the drive pulley. In the sketch below the exact location is indicated by a red arrow. The unique removable rubber wear part that is fitted on the aluminium wedge section of the Maxi-Super wears down rather than the surface of the elevator belt.

The preferred method of making elevator belts endless is by using mechanical belt fasteners and because the belt fastener consists out of segments, it is able to follow the crowning on the surface of the pulleys resulting in quieter and better tracking. The two elevator belt ends are bend off at a 90° angle and the radius in the belt fastener has also been carefully designed for use in combination with the more thicker elevator belts, securing that the belt ends will not bend off to drastically, resulting in stress on this section of the belt.

The joint area between the two elevator belt ends is the first area where wear will take place. The exact location where this occurs is where the fastener is caught by the drive pulley. In the sketch below the exact location is indicated by a red arrow. The unique removable rubber wear part that is fitted on the aluminium wedge section of the Maxi-Super wears down rather than the surface of the elevator belt.

The preferred method of making elevator belts endless is by using mechanical belt fasteners and because the belt fastener consists out of segments, it is able to follow the crowning on the surface of the pulleys resulting in quieter and better tracking. The two elevator belt ends are bend off at a 90° angle and the radius in the belt fastener has also been carefully designed for use in combination with the more thicker elevator belts, securing that the belt ends will not bend off to drastically, resulting in stress on this section of the belt.

The joint area between the two elevator belt ends is the first area where wear will take place. The exact location where this occurs is where the fastener is caught by the drive pulley. In the sketch below the exact location is indicated by a red arrow. The unique removable rubber wear part that is fitted on the aluminium wedge section of the Maxi-Super wears down rather than the surface of the elevator belt.

The preferred method of making elevator belts endless is by using mechanical belt fasteners and because the belt fastener consists out of segments, it is able to follow the crowning on the surface of the pulleys resulting in quieter and better tracking. The two elevator belt ends are bend off at a 90° angle and the radius in the belt fastener has also been carefully designed for use in combination with the more thicker elevator belts, securing that the belt ends will not bend off to drastically, resulting in stress on this section of the belt.

THE WORKING OF THE MAXI-SUPER IS BASED ON CLAMPING FORCES AND FRICTION
The joint area between the two elevator belt ends is the first area where wear will take place. The exact location where this occurs is where the fastener is caught by the drive pulley. In the sketch below the exact location is indicated by a red arrow. The unique removable rubber wear part that is fitted on the aluminium wedge section of the Maxi-Super wears down rather than the surface of the elevator belt.

The preferred method of making elevator belts endless is by using mechanical belt fasteners and because the belt fastener consists out of segments, it is able to follow the crowning on the surface of the pulleys resulting in quieter and better tracking. The two elevator belt ends are bend off at a 90° angle and the radius in the belt fastener has also been carefully designed for use in combination with the more thicker elevator belts, securing that the belt ends will not bend off to drastically, resulting in stress on this section of the belt.

THE WORKING OF THE MAXI-SUPER IS BASED ON CLAMPING FORCES AND FRICTION
The joint area between the two elevator belt ends is the first area where wear will take place. The exact location where this occurs is where the fastener is caught by the drive pulley. In the sketch below the exact location is indicated by a red arrow. The unique removable rubber wear part that is fitted on the aluminium wedge section of the Maxi-Super wears down rather than the surface of the elevator belt.

The preferred method of making elevator belts endless is by using mechanical belt fasteners and because the belt fastener consists out of segments, it is able to follow the crowning on the surface of the pulleys resulting in quieter and better tracking. The two elevator belt ends are bend off at a 90° angle and the radius in the belt fastener has also been carefully designed for use in combination with the more thicker elevator belts, securing that the belt ends will not bend off to drastically, resulting in stress on this section of the belt.